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COMMENT 

Eight-vertex model and Ising model in a non-zero magnetic 
field: honeycomb lattice 

F Y W u  
Department of Physics, Northeastern University, Boston, MA 021 15, USA 

Received 30 August 1989 

Abstract. The known equivalence of the honeycomb eight-vertex model with an Ising 
model in a non-zero magnetic field is derived via a direct mapping. Compared with a 
previous derivation which uses the generalised weak-graph transformation, the new method 
is simpler and more direct, and can be extended to other considerations. 

The eight-vertex model on the honeycomb lattice is a general lattice model playing 
the role of the 16-vertex model for the square lattice. The honeycomb problem was 
first considered by Wu [I], who used a generalised weak-graph transformation [2-41 
to study its soluble cases. The honeycomb eight-vertex model has since proven to be 
a useful tool in deducing exact results for a number of physical problems. They include 
the obtaining of a closed-form expression for the critical frontier of the antiferromag- 
netic Ising model [5], the establishment of the effect of three-body interactions on the 
critical behaviour of the coexistence curve diameter of a lattice gas [6], the determina- 
tion of the exact phase diagram of a spin system with two- and three-site interactions 
[7] and an exact analysis of the spin-1 Blume-Emery-Griffiths model [8]. A key step 
in all these studies is the use of the aforementioned equivalence of the eight-vertex 
model with an Ising model in a non-zero magnetic field. While it is fairly easy to 
deduce this equivalence for a special subspace of the eight-vertex model, the general 
equivalence of the two problems is by no means obvious. In fact, it was after 
considerable algebraic manipulation using a generalised weak-graph transformation 
that the equivalence was previously established [ l ,  81. In this comment we present an 
alternative analysis of the eight-vertex model ro arrive at the same result. The new 
method is very simple and direct, and can be extended to other considerations. 

Consider a honeycomb lattice and draw bonds along its edges such that each edge 
is independently 'traced' or left 'open'. Then, there are eight different vertex configur- 
ations occurring at a vertex, which we show in figure 1. With each configuration we 
associate a vertex weight U,  b, c or d and, as in [l] ,  we assume all weights to be 
positive. The partition function of the eight-vertex model is the generating function 

(1) 2 = Z(a,  b, c, d )  =c unob"lc"2d"3 

0 C C b b b C d 

Figure 1. Vertex configurations and weights for the symmetric eight-vertex model. 

0305-4470/90/030375 +04%03.50 @ 1990 IOP Publishing Ltd 375 



376 F Y Wu 

where the summation is over all bond configurations of the lattice, and n, is the number 
of vertices having i bonds. 

Our proof that the partition function ( 1 )  is, in fact, that of an Ising model, consists 
of two steps. We first formulate the eight-vertex model as a decorated Ising model, 
and then decimate the decorating sites. The situation is illustrated in figure 2. 

Figure 2. A decorated honeycomb lattice with the decorating sites denoted by full circles. 

To formulate the eight-vertex model as a decorated Ising system, we place on each 
edge (of the honeycomb lattice) a decorating Ising spin U, and let U =  1 correspond 
to the edge being empty and U = -1 correspond to the edge being occupied. Then we 
can describe the configuration of a vertex by specifying the configurations of the three 
surrounding spins. It is then possible to realise the vertex weights by introducing Ising 
interactions R, and magnetic fields H and 2 H '  to the decorated honeycomb lattice as 
shown in figure 2. The tracing of a spin at a honeycomb lattice site then leads to the 
following realisation: 

a = F e 3 H ' ~ ~ ~ h ( H + 3 R )  b = F e H ' c o s h ( H + R )  

c = F e-H' cosh( H - R )  
(2) 

d = Fe-3H'cosh(H-3R) .  

Here F is an overall factor which does not concern us. Solving (2)  for F, R, H, H ' ,  
we find 

cosh 2R = B/2(AC)'I2 

e4H' = C/ A (3) 

c0sh2H =- 
2bc 4AC B 2  4bc 

where? 
A = bd - c2 = F 2  e-2H' sinh2 2R 

B = a d  - bc = 2 F 2  cosh 2R sinh' 2R (4) 
C = ac - b2 = F2 eZH'  sinh' 2R. 

Our next step is to decimate the decorating Ising spins, i.e. to replace the sequence 
of two R interactions with a magnetic field 2H' at the centre site, by a single interaction 
K with a magnetic field h at the two end sites. This decimation completes the mapping, 

+ The definition of A given here differs in sign from that used in [8]. 
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and gives rise to a honeycomb Ising model with nearest-neighbour interactions K and 
a magnetic field 

L = H + 3 h  ( 5 )  

where H has been given in (3), and K and h are obtained from 

f eK+-?h - - cosh(2H’+2R) 

(6) f e K - 2 h  - - cosh(2H’- 2R)  

f e-K =cosh 2H’. 

Here, f is another overall factor which does not concern us. Solving (6) forf,  K and 
h, we obtain 

e4K = 1 + ( B 2 - 4 A C ) / ( A + C ) ’ > 0  

e4h = cosh( 2 H’ + 2 R)/cosh( 2 H’ - 2R). 
( 7 )  

Expressions (3),  (5) and (7) now complete the description of the Ising parameters K 
and L. 

The expression for e4K in (7)  is the same as that in [l]. However, as shown in [8], 
the sign of eZK can be either positive or negative. The negation of eZK, however, 
corresponds to the change K + K + i 7 ~ / 2  or tanh K + l / tanh K,  reflecting an intrinsic 
symmetry of the eight-vertex model. We shall therefore disregard such sign differences 
in our considerations. Particularly, we consider K being real, B > 0, A C  > 0. We now 
determine the nature of the magnetic field L = H + 3h. 

Ferromagnetic Ising model ( K  > 0). This is the case B2 > 4AC. From (3) we see that 
both H’ and R are real so that, using (7) ,  h is also real. Consider next cosh 2 H  given 
by (3). Since this expression essentially contains two independent variables, it is 
convenient to parametrise by introducing x = a/b,  y = d/c ,  z = b/c which rewrite (3) as 

(8) 

and determine the range of cosh 2H by varying 2. The extremum is found to occur at 
z = a, or ac3 = b3d, which indeed lies in the regime BZ > 4AC. This leads to the 
inequality cosh 2 H  > 1. It follows that H, and hence the resulting magnetic field 
L = H + 3 h ,  is real. 

1 h - U 2  -xy-3 
l (  

cosh 2 H = 
2 J ( x  - z ) ( y  - z-1) ( x  - z ) ( y  - z - ’ )  

Antiferromagnetic Ising model (KCO). This is the case B2<4AC. From (3) we see 
that H’ is real and R pure imaginary. Therefore, using (7) ,  h is also pure imaginary. 
consider next the range of cosh 2H. Since the extremum z = e of cosh 2 H  determined 
in the above lies outside the regime B2 < 4AC, a bound on cosh 2 H  is actually obtained 
by setting B’= 4AC in (3). This consideration then leads to lcosh 2 H \ <  1, implying 
H, and hence the resulting magnetic field L = H + 3h, is pure imaginary. 

In conclusion, we have shown that the honeycomb eight-vertex model with positive 
vertex weights is completely equivalent to an Ising model in a non-zero magnetic field. 
The Ising model is either ferromagnetic with a real magnetic field, or antiferromagnetic 
with a magnetic field which is pure imaginary. These conclusions agree with the 
findings of [ l ,  81, but the derivation presented here is much simpler. The present 
approach also suggests possible extensions of our consideration. First, the method 
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now permits straightforward extension to the asymmetric eight-vertex model, an analy- 
sis which has proven to be extremely cumbersome using the generalised weak-graph 
transformation [9]. Furthermore, we can also extend the analysis to other types of 
lattices. For a lattice of coordination number q = 4 such as the square lattice, the 
corresponding vertex model is the symmetric 16-vertex model characterised by five 
independent vertex weights. The analogue of (2) is therefore a set of five equations 
containing the four variables F, H,  H', R. It then follows that the vertex model is 
reducible to an Ising model in a four-dimensional subspace, deduced by eliminating 
the four variables from the five equations. This leads to results in agreement with 
those previously found using the generalised weak-graph transformation [9]. Finally, 
we point out that all these considerations, which rely only on the fact that there exists 
a uniform coordination number q, hold quite generally for any lattice with the same 
q, regardless of the spatial dimensionality. 

This research was supported in part by the National Science Foundation Grant no 
DMR-8702596. 
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